Unit information: Stochastic Optimisation in 2010/11

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Stochastic Optimisation
Unit code MATHM6005
Credit points 10
Level of study M/7
Teaching block(s) Teaching Block 2 (weeks 13 - 24)
Unit director Dr. Tadic
Open unit status Not open
Pre-requisites

None

Co-requisites

None

School/department School of Mathematics
Faculty Faculty of Science

Description including Unit Aims

Stochastic optimisation covers a broad framework of problems at the interface of applied probability and optimisation. The main focus of this unit is on Markov decision processes and game theory. Markov decision processes describe a class of single decision-maker optimisation problems that arise when applied probability models (eg Markov chains) are extended to allow for action-dependent transition distributions and associated rewards. Game theory problems are more complex in that they involve two or more decision makers (players), so the optimal action for each player will depend on the actions of other players. Here, we focus on Nash equilibria - strategies that are conditionally optimal in the sense that a player can not do do better by changing their own strategy while other players stay with their current strategy.